Coherence for monoidal monads and comonads

نویسندگان

  • Kosta Dosen
  • Zoran Petric
چکیده

The goal of this paper is to prove coherence results with respect to relational graphs for monoidal monads and comonads, i.e. monads and comonads in a monoidal category such that the endofunctor of the monad or comonad is a monoidal functor (this means that it preserves the monoidal structure up to a natural transformation that need not be an isomorphism). These results are proved first in the absence of symmetry in the monoidal structure, and then with this symmetry. The monoidal structure is also allowed to be given with finite products or finite coproducts. Monoidal comonads with finite products axiomatize a plausible notion of identity of deductions in a fragment of the modal logic S4. Mathematics Subject Classification (2000): 18D10, 18C15, 18C05, 18A15, 03F07, 03F05, 03B45

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coherence for monoidal endofunctors

The goal of this paper is to prove coherence results with respect to relational graphs for monoidal endofunctors, i.e. endofunctors of a monoidal category that preserve the monoidal structure up to a natural transformation that need not be an isomorphism. These results are proved first in the absence of symmetry in the monoidal structure, and then with this symmetry. In the later parts of the p...

متن کامل

A Skew-Duoidal Eckmann-Hilton Argument and Quantum Categories

A general result relating skew monoidal structures and monads is proved. This is applied to quantum categories and bialgebroids. Ordinary categories are monads in the bicategory whose morphisms are spans between sets. Quantum categories were originally defined as monoidal comonads on endomorphism objects in a particular monoidal bicategory M. Then they were shown also to be skew monoidal struct...

متن کامل

Semiunital Semimonoidal Categories (applications to Semirings and Semicorings)

The category ASA of bisemimodules over a semialgebra A, with the so called Takahashi’s tensor-like product − A −, is semimonoidal but not monoidal. Although not a unit in ASA, the base semialgebra A has properties of a semiunit (in a sense which we clarify in this note). Motivated by this interesting example, we investigate semiunital semimonoidal categories (V, •, I) as a framework for studyin...

متن کامل

Azumaya Monads and Comonads

The definition of Azumaya algebras over commutative rings R requires the tensor product of modules over R and the twist map for the tensor product of any two R-modules. Similar constructions are available in braided monoidal categories, and Azumaya algebras were defined in these settings. Here, we introduce Azumaya monads on any category A by considering a monad (F,m, e) on A endowed with a dis...

متن کامل

Comonadic Notions of Computation

We argue that symmetric (semi)monoidal comonads provide a means to structure context-dependent notions of computation such as notions of dataflow computation (computation on streams) and of tree relabelling as in attribute evaluation. We propose a generic semantics for extensions of simply typed lambda calculus with context-dependent operations analogous to the Moggi-style semantics for effectf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical Structures in Computer Science

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010